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An algorithm is presented for the rapid evaluation of expressions of the form

. m
. T Dy
j=1
at multiple points Iy,Z2, -, In. In order to evaluate the above sum at n points, the algorithm

requires order O(n + m) operations, and a simple modification of the scheme provides an order
O(n) procedure for the evaluation of an order n polynomial at n arbitrary real points. The algorithm
is numerically stable, and its practical usefulness is demonstrated by numerical examples.
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1. Introduction
In this paper. we present an algorithm for the rapid evalnation of expressions of the form
nt

Zu, e T (1)

J=1

where r > 0, &6 = {aj.a0, - .am}.3 = {31,792, . Fm} are two finite sequences of real
numbers and 3, > 0 for all 1 < ) < m. To evalnate the sum (1) at n arbitrary points on the
real axis. the algorithm requires a number of arithmetic operations proportional to

1 1.2

(4 m-loga(=)) - (log2(=))". (2)
¢ t

where ¢ is the precision with which the caleulations are being performed, and in most cases

likely to be encountered in practice, the estimate (2) can be reduced to

{n+ m) /(){/-_)(l) (3)

¢

(see Observations 7.1. 7.2 below),
The evaluation of expressious of the form (1) is closely related to several classical problems
in the theory of computation. For example, the problem of rapidly evaluating a polynomial

m

Py=3 PV (4)
J=1

at m different points is readily reduced to the form (1) by the obvious substitution r =
log(t). The classical algorithmm for evaluatirg (4) at m points has an asymptotic complexity
O(m log?(m)) (see, for example, [1.2]), making (3) a moderate improvement over previously
available results, so far as the asymptotic CPU time estimate is concerned. On the other hand.
the algorithm of the present paper is numerically stable, and onr numerical experiments (see
Section 8) indicate that in practical calculations, it is extremely efficient, making it a method
of choice whenever expressions of the form (1) have to be evaluated at large numbers of points.

Remark 1.1. Classical algorithms for the rapid manipulation of polynomials are purely
algebraic. and are applicable to polynomials over a wide class of fields. On the other hand. the
algorithm presented here is based on approximation theory (i.e it relies on certain facts from
real analysis) and is restricted to polynomials over the field of real nmmbers. While it can be
ceneralized to certain other fields. detailed investigation of snch generalizations is outside the
scape of this paper, and will be reported at a later date.

2. Relevant Facts From Approximation Theory
Suppose that a,bh are a pair of real nnmbers such that 4 < b, and that & > 2 is an integer.
Chelyehev nodes 1706, fp on the interval [0 b] are defined by the formula

r+! [ 2/ + 1 =
,:’ )-0—{ ’<r'r).~'< ——;) (5)

Y Y
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For a function f: [a.b] — R'. we will denote by P¥, s the order & — 1 Cliebychey approxi-
mation to the function f on the interval [u.b]. i.e the (umque) polynomial of order I — 1 such
that Puk',,_/({,-) = f(&) for all i = 1.2,--- k. There exist several expressions for the polynowmial
Pa""b‘f. and the one we will use in this paper is

k
=Z“](’)'f(tf) (G)
J=1
with
i1 (0= 1)

N H.‘.=1..;éj({j - f:).

The following well-known lemma provides an error estimate for Chebychev approximarions.
[t is the principal analyvtical tool of this paper, and can be found, in a somewhat different form.
in [3].

Lemma 2.1. If f € ¢¥[a.b] (i.e. f has k continous derivatives on the interval [a.5]). then
for any t € [a.b],

M O(b=a)F

| Pryp(t) = f(0) < ST (8)

with

M= lxg{;}?] LRy (9)

Furthermore, for any & > 2 and € [u.}].

k
PHO RS (10)
=1
and
k 2
Syt L <24 = dou(h). (11)
J"_'l i

In the present paper, the above lennma will be used in the special case where 0 < « < b,
and f(t) = e " with v > 0. Under these conditions, the expression (8) axsumes the form
_k ! i
3 " (b — ) -t '
| Pusg() = NS 5 —p— (12)

and the following lemma provides a form of the estimate (12) independent of ~.

Lemma 2.2. If under the conditions of Lemma 2.1, f(#) = e~ 7' b = 2a. and a > 0, then

1
| Pry () = fU) < 7 (13)
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for all A > 2 and ¢ € {a.h].
Proof. Obvonsly. for ¢ € [a.2d]. the estimate (12) can be rewritten in the form

kook
k g a —~a
| Pop () = f(O) S = e 7% (14)
]\c- 4

Ditferentiating the latter expression with respect to v, we find that its maximum is achieved at

I8
5= (15)

3

Now, snbstituting (15) into (14) and using Stirling’s formula. we obtain

AP Y

k k
S 1k o« k | A 3 1
Pk = f(O< = (2)YF — o7t o eth e o (16)
| (X_h,f( f( ) |— Ji! (“ 4/\» = 4;\. I = 41\.
3. Exact Statement of the Problem
In the description of the algorithm below. we will assume thar:
a)d =daj.agcLag . =130 o 3k s =y, g, e, are three finite sequences of
real numbers.
b) The sequences .3 and I are monotonically increasing.
C) .j) 2 0.
‘1) 2 (.
o) We wonld like to evalnate the snms
121
- -3 -
Saalee) =D a9 (17)
=1

for all £ = 1.2, . n with a relative accuracy ¢ > 0, i.e. we wonld like to hind a nnmber
S, 4{re) such that

| Sa (k) = S, sl

| Sa sl Bl L)'S( (18]

!

for each k € T1.n].

Remark 3.1. As has been mentioned in the Introduction. the problem of evalnating a
polvuomial of order m at n poinrs is easily reduced to the form (17). Indeed. suppe ¢ that a
pobvnomial of the form (4] Lhas to be evaluated at a monotonically increasing fiuite seqnence
ot points fyotso oy, [t can be assnmed withont a loss of generality thar 0 < f; < 1 for all
A= 1.2 onoand we will introdnce a new varirble r = —log{t), and denote =log{te) by g
Thus. evaluation of the polvnomial (4) at a monoronically increasing finite sequence of points

has been rediteed to evabiating the expression
m
1
DBRAN (19)
J=1




at a monotonically decreasing hnite sequence of points T = Jry. 0. o2, . Finallvo by revers-
i the order of the sequence F,owe veduce the evaduation of the polvnomial (4} ar the poinrs
tiotae ot to the standand problem tormmtlared above.

4. Notation

In this section, we will introduce several definitions to be used in the description of the
algorithm in Sections 5. 6 below. Throughont this section, we will assume rhat we are dealing
with the problem described in Section 3. aud that ¢ is an integer whose partienlar value ix 1o
be Jdertermined later,

We will denote by Mothe smallest integer mumber such that

"”l ‘l‘”
—_— » B
DAY < (-”)
We will define o finire sequence (77,0070 = 1,20 - A of intervals on the real axis by the formmlae
4
. o m . < ; _
r = LS S J ft,), [ <1 < M 1.
, _ . ~”m ] RN
i v/ = ll)" W——IJ. (-l)

Similarly. we will define a finite sequence [Vl = 1,2, -+, M of intervals by the formulae

- RTEE ) .
Vo= (S e 1SS M- L
- . . 'r“ 1 DT}
‘ v/ = L(). '—)\_/—_l). (-—)
For any + = 1.2, - .M, we will denote by 3, the subset of . consisting of all points 3 such

that 4 e 7 and for anv o = 1,20 .M we will denote by ¥y the subset of » consisting of all
potnts ry sich that r, € 15,
For vach v = 1.2 - Mo, will denote the nnmber of elements in 9,0 Similarly. for each

o= 1.2, Mo, will denote the mmber of elements i oy,

Remark 4.1. Obviouslv, depending on the distriburions of the points 4, and ay, the M
can b fairly rge, However, the total number X oof suele 7 that g = 0 s honnded by e and
tlie total mnnber N ot <uel 2 that s, # 00 bonnded by . For obvions reasons, we will refer

as empty to intervals 770 sueh thar oy = 0 and oy = 0 In the opposite case. the intervals
will be referred ro as non-empry.
Foreachr = 120 Moand = 120 (g we will denote by ) the j-th Chebveliev node on
the interval 17,

Similariv. for cachy = 1,2, CMoand J= 120 g0 we will denore by _r; the j-th Cliehy-
cliev node on e jurerval 15
Foreach ko= 120 Mand s ~uch thar 3, € Upowe will define the fiuite scqnuence Lod 00 =

' A | |

,JI'.

L2 oy b rhe fomea
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Foreach A= 1.2, M., and i = 1.2, -, ¢, we will define a real number u " by the formula
Z ay- ’u (24)
3,€L%

Observation 4.1. Due to Lemma 2.2, the expression
3 3 ~ 3kt R
Of(f)::z:uf‘j‘e J (25)

can be viewed as an approximation to the function e™? ', Furthermore. for any t € 0. x].

3 -3, 1 .
EAUET Y (20)
Combining (24), (25). (26) with the triangle lueqnality. we easily see that the sum
1, iq
. 3k . _ k.
or(t) = Zrzf<ej-'=zZoj--uj,--ejx'
i=1 i=1 3,el,
U
k -3k o~
= Z nJ-erN--e : (-")
3,€l% =1

can be viewed as an approximation to

Z &y 6-"’1. (28)

g€
At that
. _ i
Coklt) = DY ay et 4—- Z (29)
.jIEI'k E

Farthermore. combining (11) with (24) and n=ing the triangle inequality. we obtain

4 4 5
k /\ N E -
STk STla, ST, D2+ 2 doa()) - X gl (30)
=1 JEL =1 ’ 3,el’y
Given b= 1.2, - M.and 1= 1.2, 4. we will define a real nnmber f'k by the expression
et
X TR
f‘k: ?‘ V‘III ” ‘1‘.. (31)
/—lq.‘l =i
5
P N < L. - . R .« A

Bl M. S Sl iRl R e
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e For each kA = 1.2, .M. and 1 < j < n such that r, € Vi, we will define /; by the formula
K
v o
f N3 9 D)
fr=2_li I (32)
' =1
' with the coethcients vfj defined by the formula
.
A kK L=
D H ok (33)
- istagl 1 T
e Observation 4.2. Due to Lemma 2.2 for any y = 1.2. - .n and b sach that oy, € Vil 5
can be viewed as an approximation to the expression
.
:t~' wk=1 q
f= S Sup et (34)
:_':' i=ve+1 (=1
6’- atud
A5 R 1 =1y )
I . i 5
. h-his g X Xlml (35)
P 1=+l =1
: Combining (35), (20) (30), and using the triangle ineqnality, we conclude that
¥ : nt l ) m
' : e - z. !
a3 Sy =20 OIS B 2 lonla)) 2t (3]
3 _-,' =1 1=1
¥ .,
s for any y = 1.2, - .5 Now, for any given € and ¢ > 2 - log,(¢).
-'; He—1 m
| f, ~ Z o, em ‘S':'Z|”‘|‘ (37)
i=vp+1 =1
S
Lk
» . s
e Foranv = 1.2, .M = 1, we will denote by 1 the Llargest integer snch rhat
. , 1 a
1% vy < 1’)!/'2(#3m Say) =~ l(’f/‘z([‘)f/':(f))» (35)
. ¢
5S Similarly, for anv 7= 1.2, .M = 1, we will denote by e, the smallest interger snch that
- , 1 e
~ i > /“112(Jm -"u) - - l”,’/Z(_)' (39]
__'_ ¢
"" . - . , .
; For anv k= 1.2, - M.we will define the subset §17 of the rterval [00.9,] by the formnda
i
o e = [J 1. (40)
12
and denore by Spothe sum
. t)
w ;
.1
-,

N “"‘. Al



» 3 4 - g % 3 o . Q- Y e Sy - r - = SN Al Ml S Eod o s B a4 Aok a'h At adl atd

ol
2
o
L“
>
'\
W
! S o= a,. (41)
< 1,ed’
""\
7. Observation 4.3. It 1s easy to see that if v € U7, and 3 € V) with ; < v, then
)!
'y —r- .
e™"9 < e (42)
‘ o~ - . - . .
o Similatly if r € U; and 3 €17 with j > py. then
. le ™7 — 1< e. (421
o
N Fuerthermore, for anv 7 = 1.2, .M - 1.
. . 1
pi = <2 loga (). (-44)
P €
In other words, given x € U; and 3 € 1. one of three possible sitnations obtains:
N a) j < 1. In this case. e™7¥ can be approximated by 0 wirh a precision «.
Q b) ; > . In this case, €27 can be approximated by 1 with a precision .
SN

¢) vy € < py. In this case, e™ % can not be approximated by cither O or 1. However, the total
number of indices j for which this situation obtains is bonnded by 2-{ogz (1), independently of

I.3. 000,

- ‘!1" 1"} '.' ‘)

5. Informal Description of the Algorithm.

X We will illustrate the idea of the algoritlim on a suuplified example. Namelv, we will assnme
30 that 3, € [/}, i.e.
‘.-‘
21, 'j’” < 3 < 3 [4
R ?_-1_-111 (4")
K4 -
3 forall i = 1.2, - m.and x; € Vi ie.
o x,
x:- ry S Xy S R (40)
[ forall y=1.2.-- .
" Consider the function e~ ¢ with 3 € 17, € V7. Fixing + awl viewing e77 4 as a fuuction
5 of 3. we construct its g-point Cliehvehev approximation «7(.4) on the interval 7). Due to (G},
N .
l-‘
~ 4
f“ i -.j‘ £ -
% VLAY =Y () T (47)
. ;=1

N

wirli the fanctions o, defined by (7). and the cocfficients J) defined in Section 4. According
2 to Lemma 2.2,
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and, given a fixed srecision . we can choose y ~ 2 Loy 2y ond in al snbsequent enlonlations
replace e™7F with c1(3). Combining (43) with the rrinnele inequalite, we obrain the ostimate

" e 1 1
'V‘rr-:"’(ﬁ)—vu--e_"’)<————- fa, | (49}
VAP AN ‘'t = )
=1 J=1 =1
for any » € 0.+l and die to (45). the latter can be rewritten in the form
V’ nm 1 m
[ N T .4l' _ o= Jr - | ! .
Py E:ru 5 [S XY z: Py {50
=1 =1 J=1
with the coefficients o ey - oy defined by rhe formula
i
I.":ZH}"I,(."’), (51)
1=1

Now, instead of evaluaring  (17) ar each of the polnrs eo we start with evalnating rhe
coetcients o, = 1,20 (g0 which iso obvionslyvoan ovder Q@ ¢) procednre. After rhar, we
evalnare the expression
4
N
e

=1

_ jl
Ly 0 e

for all b= 1.2 - oowhich Is an order Ofn ) procedure {evalnating a g-term expausion ar n
peinr=). Thus. the total operarion conur beeomes QO (= m) ). Due to (49). o order to obtain

a relative acenracy rog has 1o bhe of rlie order ,’,,‘,,‘('l’[. and we lave redieed rhie compurational
complexiny of evalnating (17) from O(n - ) to

!
O((n+ m) Tog(=)). (53)
€
An alternative approach wonld be to calenlare the coethicients o for i = 1.2, - ¢ (order

m -y operations). evaluate the expression

—rtogt
; R (54)
E
=1
. , ) . . . -
for all A= 120 oy {ovder ¢ operations ). and interpolare the expression (17) from the
('h"lv_\'('h»-\‘ todes o %:]_ :l/ to the 1»'-111% Ly {order ¢ operations). The yeanlt-

g CPU rime estimare in this case is

, 1 L,
Ol + )y Oyt = O{n +m) //‘(/l(—) 4 ()(1/”.,“(—““)_ (59)
‘ ¢
whicl v uot subsrantially diferenr from (53).
When the points Fp 90 L3, and syora o, do not satisfv rhie inequalities  (45).

{4G}. the above approach can not he used in such sreatchrforward manner. How ver., for am
rop € LM Lemma 2.2 can be nsed separately on each of the intervals [V, owith the resalts
combined ro abtain an approximation to (170 This i~ done i the fallowing <ection, resnlting
oan order

]
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algorithin for evalnaring (17) at »n poiuts with a relative precision .
6. Detailed Description of the Algorithm
Algorithm
Stage 1.

Comment Choose paramerers and perform seometrical preprocessing.

Clionse precision « to be achieved, Set g = 2 /m/( 1), Constret the intervals 17 U oand the
/ AT ' 1

~ers S0, with o= 1020 DAL
Stage 2.

Comment Oun el of the non-empry intervals 77 eviduate the coefficients r/f' n the expan-
~lons (37)‘

Step 1.

Comment ‘Ser all coefficients ¥ to zero]

do k=10 =1 % #0

do:=1.4y
set //‘k to Zero,
end do
end do
Step 2.
Comment For vach 4 on each of the non-empry inrervals e svalinare o, //ﬁ\'.‘ and addar ro

tie Hf.;

do b= M- 1.4 )
do:'=1.y

do

el
Eoaliare /1;‘1 via tormonda 230 el add the prodner o I/f teo
end do '
end do

end do

Stage 3.
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Comment Evalnare /‘f via fornmla (31) for ail b o= 1.2, M osnel ot L
r=1.2. T

dol=1.M=-1.0ir %Y
do:.= 1.y
NI TOT ROV ko om L Jo =3l et
evahiate the expression f = i e ity T
end do
end do
Stage 4.
Comment Tor each j = 1.2, CnLoevidnare [y viactormnle (327
do b= 1.0 =1 0=
do . =15
eviadnate the expression f, = S}’Zl /‘/‘J o
end do
end do
Stage 5.
Comment For each b = 1.2, M oand each oy 2 VL nse Observation 4.3 rg evaduate 10

SNy =

Step 1
Comment ‘Evaluare 5y

Soaen e Addirhe vesulr o fisconeliding the calenlation]

er N = S -
~ 1 — d el e

Step 2

Comment Evaluare Spvecursively for =23, - \[]

evabiare S v the formnla S = 52 = & N

el

end do

Step 3

Conmument Tor A = 120 0ol all oosieh thiat ey € Vel add S0

, .
CoCea Tt

covonchiding the

> ——————
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do k =
do .
mld
end do
end do

LM i 0
v € "k
Si to fi.

7. Complexity analysis

Stage
number

Stave 1

PR

P
' -.r‘h,"\-’\
Da o i A

Operation
count

Ofn + m)

O(m)

O(n -+ m)

’-
o

PN

P P
Rt
(]

Explanation

LCach of the polnts 3y 3. 09, 1s assigned to a single
interval 7,0 Each of the points oy ooy Is assigned

to a single interval V7.

Each of the coefficients ¥, with £ = 1.2... . \[L.

L
and 1 = 1,2, ¢ is set to zero.

Each of the points 3,..32,- .3,
coutribiutes to the coeflicients r(f‘ with
J = 1.2, ¢, and evalnating cach of the coethcients
uj, requires order ¢ work (see (23)) .

The sum (31) has to be evaluated

at ¢ nodes 1?15 = lé on each of non-empty
intervals V9 Vo - Vgl

aud on the £ — th interval. it contains

itk — v terms. However, die to (44))0 g — g < e

for all b= 1,2, AL

The expression (32) has to be evaluated tfor

each of the points ry . ra.---.1,. and evalunating

cach of the coefficients 1""! requuires order  work (see (33)).
The sum Sy =37, ¢+, 0 coutains no more than m terms,
Thie rotal nnmber of non-empty intervals V, is bonnded by o,

aud the total nnmber of coetheients a,
15 bonnded by .

I

- ™
Ea NN
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‘- Step 3 Ot Cach of the unmbers f, is amended once.

Summing np the CPU times for all stages above, we obtain the following time estimate:

. ) ) — 1 .
Tovu= o m~=i w~c m g =d n g +e Moy~ log(=), (57)
-~ F
o where the cocthelenrs oohoes e depend on thie computer svstem, Linguage, implementation,
) N7 - ' - - :
" etes However, X <0 aed o~ dogi b and tie estiinate (57) assuines the form
: . 1 ) 1 )
o T = o Clogu=1 =b u (logi= ). (98)
¢ ¢

Le estinate 1530 0= independent of the Jocations of the points A0, in B and does not

depend onany precompared daras The following two observations reduee 1t 1o

1
T =i =y dogo =) (:,O)

¢

. for manyv problems ot practical inreresr,

) Ve . . - )
Observation 7.1. The term b o og= in (H3) i ax<ociated with the Staue 3 of rthe algorithm
Al the wrosslv pessimistie estunate

i .

Accordineg ro 207,

"‘-:"- R ETTIU ; l

-"-f’ -\[_ 1 Sl“f/.‘|\—’——l) :l“fl.)('*m)Tl”f/,}(-"u)+[(']/_‘(_)~ (61)
h-- 3 ¢
40y . ) ) ) i i

TS Nonmally, when ealenlations are performed on o plivsical compurer. the exponeutial in the

binary representation of a real inmber s bonnded, and we will denote tlins bound by AL Tt

’,,'*-:; mnediarelv follows thar e adl cases,

Ear — ‘
o M <M <3 Togid) + L (62)
o

o and the esrimare 057) hecomes

L% 1

'A'i Tt = i ~h w+o n '/J +d n g+ /(:{[(.'{) g doar =0, {G3)
B = t

Observation 7.2, The terms o oy awd o o g in (57 are assoctated wirh rhe Stares
Doand 4 ot the aleonthin, aned with the tacr thiat tn ovder to evadnate cach of thie coetheients
uf, for /J‘" Jo g = Letern product of the form (24) (or (33)) has to e evadnated, Obvionsly,

the coetheienrs ut‘ depewd ouly o on the disttihation of the poinrs 0w nor o that of oy or

ags Sumilarlve the conthcients r'}kl depend only on the disrribation of the points o0 and uot on
thiar of 5, or o, Therefored for fixed disrribnrions of A and o thie coethonns ot "j, can be
) .

precowputed and stoped. redneing the toral CPU rime estimare 1o
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Trtat ~ 0 m g +hnq++c-dog(A) 4% Loyl -). (G4)
¢

However. g ~ Tog (1), and log(A) is fixed for given compnrer system and language. Thus, when
mon — 2.

Tiotar ~ (0 m+b-n)y (63)

8. Numerical Results

A compnrer procram las been written implementing the aleorithm of rhis paper. The
calenlation is performed i two stages, each implenented by o separate snbrontine. Duriny
the wittalization ~tage, the coetlicients '/f'J. ,_'A-‘J
Ao dac D oLy (see Observation 7210 During the second stage, the sums (17

are evaluared for siven distriburions of points

are evaluared for a given set of weights oy ona, O

Remark 8.1. [t is clear from Tables 1. 3. 5 that the first stace (nitializarion) tends to
be several times more expensive than the <econd (evaluation). However, in most applications
the algorithm has to be initialized once. with subsequent repeated evaluation of the suns (17)
for varving sers of weights ay.n,.- - .a,,. This sitnation is similar to that encountered for the
[ast Tourier Transformation.

The program has been applied to a variety of situations. aud rhree such examples are
presenred in this section, with the computations perforimned on o VAN-3G00 compnter. In cach
case. we performed the caleulations in theee wavs: via the algoritlun of the present paper
i single precision arithmetic, directly in single precision arithmetic, and directly in double
precision arithmetic. The first two calenlations were used to compare the speed and precision
of the algorithin with that of the direct calculation. The direct evaluation of the field in double
precision was used as a standard for comparing the accuracies of the first two calculations. In
all cases. we set ¢ = 107%, and

m=n=10.2F (G6)

with & varvine from 1 to 8,
Tables 1..3.5 contain the CPU timings for the examples 1. 2. 3 respectively. Following is
a deratled deseription of rhe entries in these Tables.

n - the number of points ar which the sum (1) is being evalnated,

T, - the mirialization time of the algorithm.

Ty - the CPU time required by the algorithm once it has been initialized.
Tyir - the CPU tie requived by the direct calenlation.

Tables 2. 4. 6 contain the accuracies for the examples 1. 2. 3 respectively. In the description
of the entries of these rables below. Sg denotes the s (1) at the point g as evalnated directly
in double precision. Si.[" denotes the ssan (1) ar the point g as evaluated directly in single

.. ~aiy, . . . - .
precision. and S denotes the sian (1) at the point o as evaluated in single precision via the
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alvorithm of the present paper. Following is a detailed description of the entries in the Tables
2. 4. 6.

n - the number of points at which the smm (1) is being evaluated.

oxtt - the maximum error produced by the algorithim at any point. It is defined by the formula

NUZETY S - Quly o G-v
Son s = max | 8¢ Sk . (67)
uly 1<k<n | |

AT rhe maximum ervor prodiced by the direct calculation ar any point. It ix defined by rhe

formmia

= max | S -5 1. (GS)
1<k<n

Wmar
ul_q

A mar.rel
aly
the tormnla

- the maximum relative error produced by the algorithm at any point. It is defined by

qzlly _ q
e ~ ~k
r\"','l'r"l = max -—I—~——| (GD)
i 1<k<n | Si |
r\?,'[',',‘_”'""l - the maximum relative error produced by the direct calculation at any point. It is

detined by the formila

Oty t = MaAx (70)
’\r»‘l
alg
formula

- the relative error as defined in Section 3 as produced by the algorithm. It is given by the

n ~alg -
ot _ k= | S = Sk

0 [/ ~
aly u;::l | Sk I

(71)

S the relative error as defined in Section 3 as produced by the direct calenlation. It is given

rr

by rhe formnla

sret — Ziai [ S = Sy | (72)
dir = :x:l ; Sk [ . 4

Following is i detailed deseription of the three examples.

Example 1. [u this example, the points 3y 4o, 03, and oyorg - oy were detined by
the formmlae
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and the weights oy, a9, -, an, were generated randomly on the interval {0, 1]. Here, by "direct
algorithm” we mean a straightforward implementation of the formula (17). The results of this
set of experiments are summarized in Tables 1, 2.

Example 2. In this example, the points 8,8, -, 8m and x,,z2, - -, z, were generated
randomly on the interval {0, 5], and the weights o}, a2, - -, o, were generated randomly on the
interval [0.1]. Again, by "direct algorithm” we mean a straightforward implementation of the
formula (17). The results of this set of experiments are summarized in Tables 3. 4.

Example 3. Here, we evaluate a polynomial of order n at a collection of randomly gener-
ated points on the interval [0, 1]. The coefficients of the n — th order polynomial are randomly
distributed on the interval [0,1]. In this example, the direct evaluation of the polynomials is
performed via the Horner's rule (see, for example, (3]). and the algorithm of this paper is ap-
plied via the formula (1). The results of this set of experiments are presented in Tables 5.
6.

The following observations can be made from the Tables 1-6. and are in agreemant with
the results of our more extensive experiments.

1. In all cases, the accuracy produced by the algorithm of the present paper is comparable »
that obtained by the direct calculation. For large n, the algorithm tends to be slightly more
accurate.

2. The CPU times and accuracies produced by the algorithm are virtually independent of the
distributions of points a4, 3;, zx in R!.
3. When used for evaluating expressions of the form (17), the algorithm becomes faster than

the direct calculation at n» = m < 20, if the initialization time is ignored. If we include the
initialization time, the break-even point is between n = m = 40 and n = m = 60.

4. When used for evaluating polynomials, the algorithm becomes faster than the direct calcula-
tion at roughly n = m = 40, if the initialization time is ignored. If we include the initialization
time. the break-even point is roughly n = m = 300.
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3’2 Table 1
..\ -
» Example 1 : Timings
: n Tinit Taig Tir
20 0.0112 0.0015 0.0081
- 40 0.0369 0.0042 ).0318
,i-', 80 0.0802 0.0092 0.1278
e 160 0.136 0.0165 0.5202
o 320 0.218 0.0283 2.069
~‘.: 640 0.333 0.0468 8.368
° 1280 0.484 0.0784 33.25
e, 2 2560 0.727 0.137 133.58
=
P
/,‘:
~::~:: ‘ Table 2
:E--". Example 1: Accuracies
Q n e o D Vet s o5
v 20 412E-06  .638E-06  .383E-06 243E-06  .359E-07  .556E-07
) '_-::: 40 .179E-05 .219E-05 .459E-06 .418E-06 183E-07 .960E-07
! o 80 .408E-05 .688E-05 .623E-06 .671E-06 .100E-06 .169E-06
'.:‘ 160 .138E-04 .262E-04 .825E-06 .116E-06 .173E-06 .326E-06
) 320 .378E-04 .873E-04 597E-06 .195E-05 .238E-06 .550E-06
640 922E-04 .231E-03 .103E-05 .258E-05 .279E-06 .699E-06
1280 .273E-03 .740E-03 .841E-06 473E-05 .420E-06 .114E-05
2560 522E-03 .233E-02 .880E-06 .886E-05 .407E-06 .181E-05
’.f.
4.
b
A
J_f'.
JA
A
Q~ ;
L Z
AT U )
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20
40
30
160
320
640
1230

2560

n

20
40
80
160
320
640
1280
2560

b"lﬂl‘

alg

312E-06
-109E-05
.354E-05
.835E-05
.198E-04
.GOGE-04

336E-03

451E-03

Txml

0.0097
0.0275
0.0768
0.126
0.210
0.326
0.497
0.698

maz

édl r

.164E-06
.270E-05
.J64E-05
161E-04
.208E-04
.128E.03
657E-03
149E.02

Ca

Table 3

Tul g

0.0011
0.0033
0.0089
0.0157
0.0271
0.0455
0.0784
0.1351

Table 4

6mat.rel

alg

.160E-06
.405E-06
.658E-06
.8GOE-06
974£-06
.824E-06
O14E-06
.827E-06

.t
T )
P TN

o ..l-“d. X

Example 2 : Timings

Example 2: Accuracies

6maz‘rcl

dir

.192E-06
.316E-06
.860E-06
.845E-06
.158E-06
.288E-05
423E-05
.799E-05

EATL RN

ler

0.0083
0.0332
0.1328
0.536
2.12
8.50
34.12
138.34

6rcl

alg

.268E-07
.501E-07
.832E-07
.100E-06
.115E-06
.185E-06
.207E-06
.348E-06

- -~ . -
W e
-‘. -.'

6rcl

dir

.141E-07
.124E-06
.857E-07
.194E-06
.173E-06
.389E-06
.100E-05
.115E-05
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b Table 5
l' v
o Example 3 : Timings
:: n T,'",‘g Talg Tdir :
X 20 0.0135 0.0015 0.0013 i
. 40 0.0435 0.0052 0.0047
. 80 0.0048 0.0109 0.0179
" 160 0.1327 0.0172 0.0729 :
~ 320 0.222 0.0286 0.2779 ’
o 640 0.306 0.0445 1.101
. 1280 0.422 0.0718 4.54
- 2560 0.664 0.1322 18.37 .
- Table 6
Example 3: Accuracies
n smas sgas Sara e sanan e 58t 85t
: 20 TT2E-06 .260E-05 .301E-06 .305E-06 673E-07 227E-06 .
: 40 218E-05 275E-05 .306E-06 .337E-06 955E-07 .121E-06 :
- 80 518E-05 554E-05 .528E-06 210E-06 .127E-06 .136E-06 ]
r 160 615E-05 462E-05 B6T1E-06 .304E-06 T66E-07 576E-07
320 .103E-04 232E-05 851E-06 .387E-06 646E-07 .146E-06 3
640 224E-04 .205E-04 .832E-06 422E-06 .680E-07 .894E-07 \.
; 1280 615E-04 .360E-u4 745E-06 120E-05 949E-07 555E-06 ‘
- 2560 757E-04 .120E-02 .862E-06 191E-05 590E-07 932E-06
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